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Mutations occurring during embryonic development affect only a subset of

cells resulting in two or more distinct cell populations that are present at

different levels, also known as postzygotic mosaicism (PZM). Although

PZM is a common biological phenomenon, it is often overlooked as a

source of disease due to the challenges associated with its detection and

characterization, especially for very low-frequency variants. Moreover,

PZM can cause a different phenotype compared to constitutional muta-

tions. Especially, lethal mutations in receptor tyrosine kinase (RTK) path-

way genes, which exist only in a mosaic state, can have completely new

clinical manifestations and can look very different from the associated

monogenic disorder. However, some key questions are still not addressed,

such as the level of mosaicism resulting in a pathogenic phenotype and

how the clinical outcome changes with the development and age. Address-

ing these questions is not trivial as we require methods with the sensitivity

to capture some of these variants hidden away in very few cells. Recent

ultra-accurate deep-sequencing approaches can now identify these low-level

mosaics and will be central to understand systemic and local effects of

mosaicism in the RTK pathway. The main focus of this review is to high-

light the importance of low-level mosaics and the need to include their

detection in studies of genomic variation associated with disease.

Introduction

De novo mutations (DNMs) occurring during postzy-

gotic development end up only in a subset of somatic

and/or germline cells resulting in a well-described phe-

nomenon known as postzygotic mosaicism (PZM) or

also postzygotic variation. In mosaics, DNA changes

were acquired from the zygote stage onwards through-

out the lifespan. Thus, two or more distinct cell popu-

lations are present in mosaics at different levels in one

or more tissues, depending on the time of occurrence

of the DNM and the evolution of the mutation during

development. Here, mosaicism is defined as the pres-

ence of genetically distinct lineages of cells in an

organism derived from a single zygote (also reviewed

in Ref. [1]). This is in contrast to DNMs occurring in

the germline that are inherited constitutionally by all

the cells in the offspring. If changes occur later in the
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development or in the adult, they might be confined to

a single organ; for example, male germline mosaics are

confined to the testis or cancer is a mosaic in somatic

tissue [2].

Currently, we are saturated with next-generation

sequencing (NGS) data exploring the relationship

between genotype data and disease using genome-wide

association studies (GWAS) or exome sequencing; yet,

in many cases the observed phenotype cannot be pin-

pointed to specific constitutional variants. This ‘miss-

ing heritability’ shaping differences between

individuals is often attributed to other factors, includ-

ing gene regulation and environment, or genetic consti-

tutional variants with weak effects missed by GWAS

with insufficient power. However, it is also possible

that a phenotype or disease is caused by genetic varia-

tion within a few cells carrying the alternative allele

that are missed by standard sequencing approaches [3–
6]. This is the case for variants only viable in a mosaic

state with a small fraction of the screened cells with

the alternative allele being causal for the observed phe-

notype.

Within the last decade, PZM has been recognized as

an important factor explaining disease. However, there

are several limitations in our knowledge about PZM

disorders: the nature and relationship between the

mutation and the clinical outcome (genotype/pheno-

type), which molecular diagnostic tools should be

used, which tissues should be assayed, and the best

methods to capture low-level mosaicism and their limi-

tations. Mosaicism can potentially cause a different

phenotype compared to constitutional mutations

affecting the majority of the cells. This is complicated

by the fact that patients with PZMs caused by the

same mosaic mutation might not look alike, a unique

challenge for clinicians, who seek a unified approach

to identify the disease [2,7].

In this review, we will address some of these aspects

with focus on mosaicism of activating mutations in the

receptor tyrosine kinase (RTK) pathway. Some gain-

of-function mutations in this pathway are only viable

in the mosaic state rendering completely new pheno-

types and diseases. The main focus of this review is to

highlight the current state of the art on these mosaics

and the new opportunities to study these archetypical

PZMs. In addition, our goal is also to convince the

readership that the design of genomic variation studies

should include the detection of low-level variation that

could be key in explaining the observed phenotype.

Other reviews have focused on more general aspects of

PZM including hematopoietic mosaicism and loss of

chromosome Y (e.g., see Ref. [1]) and will not be

addressed here.

PZM and selfish mutations

Mutations can be triggered by distinct environmental

factors, but also by replication errors, or spontaneous

DNA lesions. Recently, one of the major mutational

mechanisms driving genetic mosaicism in humans has

been described as oxidative stress and spontaneous

deamination of methylated cytosines [8]. How these

mutant lineages expand or disappear in healthy tissues

during the development has been a highly active

research area in the last years [6,9–15] and fits within

the neutral theory of mutagenesis and genetic drift.

However, in this review, we will focus on a unique

type of mutagenesis: point mutations in the RTK and

its pathway components (e.g., RAS) that change the

function of the protein and lead to the clonal growth

of the cell.

Mutations have the potential to lead to a broad

range of cellular phenotypes and can affect the relative

fitness of a cell. Most mutations are either neutral or

decrease the fitness relative to wild-type cells, if occur-

ring in a functional region of the genome. In contrast,

some mutations can lead to a proliferative advantage

of the cell resulting in the clonal expansion in affected

lineages. Examples of such advantageous or ‘selfish’

mutations in the male germline have been documented

in some RTK genes (e.g., FGFR3 and FGFR2 [16–18])
and components of their downstream signaling path-

way such as PTPN11, HRAS, and KRAS [19,20]. Cell

growth may occur by a larger number of cell divisions

(increasing the cell mass) or by suppression of apopto-

sis. Moreover, a certain mutation that causes clonal

expansion might interfere with cell differentiation, so

that the same mutation might have a different out-

come throughout the development and in different

somatic tissues, as, for example, described for

PIK3CA-associated mosaics [21].

Mutations in a handful of genes such as FGFR2,

FGFR3, HRAS, PTPN11, KRAS, and RET

[17,18,22,23], and recently described genes such as

BRAF, CBL, MAPK1, MAPK2, and RAF1 [20], all

part of the RTK signaling pathway (RTK/MAPK/

RAS) have been demonstrated to expand in the aging

testis and represent tissue-restricted mosaics [16–
18,20,22,24,25]. These mutations are mainly missense

mutations that modify the signal modulation of the

RTK pathway (usually by a ligand-independent activa-

tion of the mutant protein) that affects cell survival

and/or cell fate. It has been observed that cells in the

male reproductive system carrying activating mutations

grow into mutant microclusters of spermatogonial

stem cells that become larger with age [17,18,20,22,26–
28]. As a result, the germline becomes a mosaic for
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several different RTK mutations as men age, all in dif-

ferent anatomical locations of the testes, as shown for

different mutations, suggesting that these mutations

arise and expand independently [19,29].

Activating RTK mutations can also expand during

zygotic development and have been described in the

context of PZM. Yet, given the importance of the RTK

pathway in the development, it is difficult to predict the

clinical manifestation of a mosaic mutation since the

increased signal activation might result in different

pleiotropic effects in terms of cell growth, differentia-

tion, and apoptosis. Moreover, very strong activating

mutations might have disruptive effects and be toler-

ated only in certain tissues or at different amounts in a

few cells. For example, strongly activating mutations in

HRAS that are highly prevalent in cancer, hardly over-

lap with germline mosaics [24,25,30]. Thus, it is not sur-

prising that the same PZM mutant might result in

highly different phenotypes. To date, it is still unknown

how common activating RTK mutations are during

postzygotic development, which is unfortunate because

this could be an important mechanism linked to uncata-

logued diseases.

PZM diseases linked to the receptor
tyrosine kinase pathway

Mosaicism is increasingly recognized as a cause of

developmental disorders with a wide spectrum of phe-

notypes and clinical outcomes. Especially, somatic

mutations in genes of the RTK pathway and down-

stream signaling RAS/MAPK/Erk (e.g., PI3K/PTEN/

AKT/TSC/mTORC1) expressed in specific organs may

result in a spectrum of different phenotypes ranging

from isolated small lesions with minimal or no over-

growth to extensive lesions and tumor susceptibility

(Fig. 1). In fact, mosaicism for monogenic disorders

was postulated as an explanation for the patchy mani-

festations of Mendelian disorders and lack of familial

recurrence of activating mutations in genes of the

RTK/MAPK signaling pathway. Here, we discuss

selected entities caused by PZM [Proteus syndrome,

PIK3CA-related overgrowth spectrum syndromes

(PROS), fibrous dysplasia/McCune–Albright syndrome

(FD/MAS), Sturge–Weber syndrome (SWS), and

mosaic RASopathies with cutaneous manifestations]

with focus on the patterns of disease (gene, level of

mosaicism with clinical manifestations, affected tissue,

and time of onset if known). With very few exceptions,

all PZM diseases are only viable in the mosaic state

(see also Table 1 and Fig. 1).

We start with the Proteus syndrome, one of the

archetypal mosaic disorders, and the PROS syndrome

that has a very patchy distribution of features reviewed

in Ref. [31]. Proteus is an extremely rare disease (< 1

in 10 million) with mosaic mutations in AKT1 that, if

constitutional, are lethal. The disease is characterized

by asymmetrically and irregularly growing tissues any-

where in the body, but is observed mainly in adipose

tissue, skin, and bone. Patients are usually born with-

out having a significant phenotype, but then start with

asymmetric overgrowth at the age of 6–18 months.

The specific phenotype depends on the timing of the

mutation, the affected tissue type, or whether the

mutated cell was restricted to a certain germ layer [31].

Postzygotic mosaicism with similar characteristics as

Proteus are some PIK3CA gain-of-function mutations,

classified as strongly, intermediately, or weakly activat-

ing, resulting in a range of pediatric developmental

phenotypes described under the umbrella term of

PROS syndromes. These disorders are characterized

by cutaneous vascular malformations with segmental

overgrowth and involve multiple tissues or body

regions, producing, for example, congenital lipomato-

sis with overgrowth, vascular malformations, epider-

mal nevi, and skeletal abnormalities. Klippel–
Trenaunay syndrome is one of the PROS syndromes

caused by somatic gain-of-function mutations in

PIK3CA that activates the PI3K/AKT/mTOR pathway

and results in dysregulation of cellular growth. The

clinical outcome includes cutaneous port-wine stains,

tissue hypertrophy, and varicosities, as well as over-

growth of capillary, lymphatic, and venous malforma-

tions in lower and also upper limbs in children or

young adults with the phenotypes changing over time

[32].

Another quite interesting mosaic disease is the FD/

MAS because it is an ‘obligate mosaic’, which means

that a mutant cell survives only in the context of wild-

type cells. In FD/MAS, missense mutations in GNAS

(R201H or R201C) lead to the mosaic activation of

Ga5 and thus impaired intrinsic GTPase activity lead-

ing to ligand-independent signaling and production of

excess intracellular cAMP [33]. The incidence of muta-

tions varies but can involve tissues from all three germ

layers (endoderm, mesoderm, and ectoderm). The phe-

notype of FD/MAS involves any part of the skeleton

and may be associated with highly variable cutaneous,

endocrine, and other extraskeletal features. Remark-

ably, some mutations result in a disorder only in the

context of a mosaic, where some cells carry the dys-

functional mutant, as was shown in xenographs

implanted in mice, in which the typical FD lesions

developed only if mutant cells were in the presence of

wild-type cells [34]. The importance of wild-type cells

for lesion progression remains an unknown question
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and could be addressed with animal models like Dro-

sophila, as described in a different section. Moreover,

the effect of mosaicism varies in different tissues and

may be related to the tissue-specific sensitivity of

cAMP dysregulation or the intolerance of specific cell

types to an overactivation of the Ga5 receptor. The

SWS is also caused by a mosaic gain-of-function muta-

tion in GNAQ that activates the signal-regulated

kinase (ERK), which in turn signals to MAPK increas-

ing cell proliferation and/or inhibiting apoptosis [35].

The level of mosaicism in the affected tissues ranged

from 1% to 18% in the majority of SWS patients. The

mutations mainly affect the skin, although vascular

malformations or venous-capillary abnormalities are

also observed [35].

A series of PZM affects mainly the skin, but can

also be accompanied by a series of pleiotropic effects

in the nervous system. Most of these PZM diseases are

caused by mutations in RAS and are linked to ‘RASo-

pathies’. Examples of this type of mosaicism are neu-

rocutaneous melanocytosis (NCM), Schimmelpenning–
Feuerstein–Mims syndrome (SFMS), phakomatosis

pigmentovascularis (PPV), extensive dermal melanocy-

tosis, and oculoectodermal syndrome (OES). NCM is

Fig. 1. PZM diseases linked to the RTK pathway. Shown are the RTK and G protein-coupled receptors (GPCR) and the actors of their

downstream signaling cascade involving the RAS/MAPK/Erk pathways, as well as the interaction between these pathways. Activation of

GPCR and RTK leads to a cascade of intracellular signals involving many different genes that finally regulate important cellular processes

such as cell growth, differentiation, migration, and many more. Genes affected by postzygotic mosaic mutations causing disease (magenta

border), the associated syndromes (magenta), and the specific genes affected (green) are also shown.

3111The FEBS Journal 288 (2021) 3108–3119 ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

I. Tiemann-Boege et al. Lethal mutations and new mosaic diseases



a rare disorder characterized by mutations that consti-

tutionally activate NRAS (Q61R, Q61K). Its clinical

outcome is characterized by large or multiple melano-

cytic nevi on the skin, meningeal melanocytosis, or

melanoma. Mutations causing NCM develop from the

neural crest and neuroectoderm and are found in the

affected skin, but not in the blood [36,37]. SFMS is

caused by autosomal dominant mutations in NRAS

(Q61R), HRAS (G13R), and KRAS (G12D) that get

manifested only as somatic mosaicism and are

otherwise lethal [38–40]. The phenotypical outcome of

the mutations ranges from epidermal nevus syndrome

to neurological manifestations visible before 1 year of

age that can also be accompanied by eye abnormalities

or epilepsy. Benign or malignant tumors can also

develop at later stages. The lesions are present only in

skin tissue (nevus sebaceous) [39,40], although they

could extend to extracutaneous tissues [41]. For further

information on other PZM-causing diseases in NRAS

or KRAS, see Table 1.

Table 1. Syndromes caused by mutations in RTK genes documented as pathogenic mosaics.

Syndrome

Genes and

substitutions Level of mosaicism Affected tissue

Time of

onset Ref.

Proteus AKT1 (E17K) Level and phenotype of Proteus

greatly depend on the timing of

the mutation, the affected tissue

type, or restriction to certain

germ layer.

Asymmetrically and irregularly

growing tissues mainly in

skin, bone, and adipose

tissue; increased risk in

thrombosis and subsequent

pulmonary embolism

6–18 months

after birth

[31,64]

PROS; for example, Klippel

–Trenaunay

PIK3CA

(E545K,

E454G,

H1047R,

H1047L)

< 1% detected by NGS CLVM (capillary, lymphatic,

and venous malformations),

skin and tissue with lesions,

and buccal cells

Phenotype

dependent

on mutation

type and

distribution

[32,65]

FD/MAS GNAS

(R201H,

R201C)

Unknown; ‘obligatory mosaic’ Endoderm, mesoderm, and

ectoderm

Children and

young adults

[66]

SWS GNAQ

(R183Q)

Mutant allele in affected tissues

ranged from 1% to 18%

Skin specially face, eye,

nervous, and neurological

anomalies

Infants [35]

PPV and extensive dermal

melanocytosis

GNA11

(R183C,

R183S)

GNAQ

(R183Q,

Q209P)

Low level of postzygotic

mutations; percentage of

mosaicism in skin was lowest

with 1.5%

Dermal melanocytosis

(Mongolian blue spots),

ocular melanocytosis,

vascular birthmarks, and

neurological abnormalities

Infants [41,67–

70]

NCM NRAS

(Q61R,

Q61K)

Affected cutaneous and

neurological tissues

Development in neural crest

and neuroectoderm; skin and

central nerve system

Children [36,37]

SFMS HRAS

(G13R)

KRAS

(G12D)

NRAS

(Q61R)

Mutation frequency of 52% in

head nevus sebaceous, 13% in

hyperpigmented lesions, and

24.3% in lip nevus sebaceous

tissues

Nevus sebaceous,

neurological anomalies, eye,

skeletal, height, brain, head,

genitourinary, cardiovascular,

neoplasia

From birth

onwards

[38,39]

OES KRAS

(A146T,

A146V,

G13D,

L19F)

RASopathy; frequency < 40% of

tissues

Skin; epibulbar dermoids and

congenital scalp lesions

(aplasia cutis congenita;

ACC)

Children [71,72]

Encephalocraniocutaneous

Lipomatosis (ECCL)

FGFR1

(K656E,

N546K)

KRAS

(A146T)

Alternate allele fraction of 23–

55% in fibroblasts from affected

tissues; not detected in saliva or

blood

Cutaneous, ocular, and CNS;

nevus psiloliparus as

hallmark of ECCL

Children [71,73,74]
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Factors affecting the clinical outcome
of PZM

Are increasing levels of mosaicism proportional

to the pathogenicity of the phenotype?

Generally speaking, PZM has a milder clinical mani-

festation than inherited constitutional mutations pre-

sent in all somatic cells (Fig. 2). This is well illustrated

for strongly activating constitutional or germline muta-

tions, for example, in AKT1 and PIK3CA which are

lethal; however, the same mutations in the context of

PZM are viable and get manifested by different over-

growth phenotypes ranging in severity from slightly

enlarged digits to gigantic limbs, or benign focal over-

growths [42]. The resulting phenotype of the mosaic

and its clinical outcome depends on the number and

organization of abnormal cells in relation to normal

cells and how the mutation affects the cellular func-

tion, as, for example, it was described for cutaneous

mosaicism [43]. Furthermore, the correlation between

a potentially pathogenic phenotype and increasing

levels of mosaicism is more likely in monogenic disor-

ders caused by gain-of-function mutations like the acti-

vating RTK mutations (Fig. 2). The clinical

manifestation also depends on whether the PZM

occurs before or after cell differentiation events. For

example, a PIK3CA mutation that occurs prior to

germ layer differentiation might be manifested as a

multisystem disease in PROS with cortical abnormali-

ties, if derived from the ectoderm, or as capillary mal-

formations, if derived from the mesoderm [44]. In

contrast, a PZM localized to a specific region of a

somatic tissue will produce disease manifestations

restricted to tissue type and/or a segment of the body,

as shown for Proteus syndrome [45].

Here, it is important to consider the consequences of

the signal activation of the RTK pathway and the asso-

ciated lethality of a mutation. The resulting phenotype

depends on the activating strength of the mutant pro-

tein, where highly activating RTK mutations are usually

lethal, as described for constitutional mutations in

FGFR3 reflecting well this activation/severity of pheno-

type correlation: Disorders such as hypochondroplasia

or achondroplasia are caused by mildly activating muta-

tions, whereas the mutation causing thanatophoric dys-

plasia II is strongly activating and thus embryonically

lethal (revised in Ref. [29,30,46]).

Every mutation causing a monogenic disorder can

also occur in mosaic form, but in a mosaic context,

the correlation between phenotype/activation is not as

straightforward. While mosaics of mild or nonlethal

mutations typically manifest themselves as a milder or

atypical form of the monogenic disorder, strong acti-

vating or lethal mutations might produce unique phe-

notypes. The increase in phenotype severity for mildly

activating mutations is exemplified in PIK3CA muta-

tions that correlated fairly well with clinical and

molecular features and the activation strength of the

mutant protein. As such, a clonal-focal overgrowth

and predominant brain overgrowth were observed for

highly activating mutations, but for less activating

mutations, less severe somatic overgrowths and inter-

mediate phenotypes were observed [21,31].

In contrast, mosaicism for lethal mutations is usu-

ally tolerated only at very low frequencies and this

might vary with the tissue and developmental stage.

Very strong activation mutations might require only a

smaller number of affected cells to show a clinical

manifestation. Moreover, highly activating mutations

might also be quickly eliminated during differentia-

tion or might survive only as ‘obligate mosaics’, as

exemplified for some gain-of-function mutations in

GNAS (associated with FD/MAS) [33]. Thus, mosai-

cism of lethal mutations can render completely differ-

ent phenotypes and cannot be deduced from a known

disorder caused by the constitutional variant. For

example, mutations in RAS genes (HRAS, KRAS, or

NRAS) are often lethal; yet, the same mutation lead-

ing to mosaic RASopathies often leads to completely

new phenotypes, unknown until the characterization

of the mosaic variant. Such is the case for mutation

of Q61R in NRAS that leads to either Schimmelpen-

ning–Feuerstein–Mims (SFMS) or NCM as shown in

Table 1.

Age dependency

The long-term clinical outcome of a mosaic might also

change with age, with the size of the mosaicism

increasing with age. Why does mosaicism increase with

age? Under neutrality, frequencies of mutant variants

increase with age as a result of a reduction in DNA

repair activity, an increase in the incidence of replica-

tion errors, and/or random drift [14]. Note also that

the somatic mutation rate is 4–25 times higher than

the estimated germline rate [47]. Under a selection

model, the proliferative advantage of the cells con-

ferred by the mutation induces clonal growth such that

clones become larger with time to detectable levels

[48]. Thus, more clones are expected to accumulate

with age and increase in size.

Multiple recent large-scale studies have revealed that

healthy individuals can also harbor mosaic mutations;

the frequencies are low in young individuals, but can

increase to detectable frequencies between 0.1% and
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20% for individuals at mid-age (30–50 years) or older

[6,9–15]. A study of hematopoietic stem and progeni-

tor cells estimated an accumulation of PZM of ~ 0.13

single-nucleotide changes per exome per year [49], also

reviewed in Ref. [1]. Also for PZM diseases, mutations

are acquired early in embryogenesis with lesions grow-

ing over the first years of life until they become appar-

ent during childhood and adolescence, as is the case

for FD/MAS [33].

In recent years, reports of rare mosaics or very low

PZM detected with ultrasensitive methods have pro-

vided a more comprehensive picture of PZM. A recent

study of the TP53 gene that examined different tissues

from babies to centenarians identified ultralow-fre-

quency mosaic clones already at a very young age with

specific signatures identified also in older individuals

indicating a lifelong expansion [13,50]. However, it

was also noted that the peripheral blood of a centenar-

ian showed an unexpected low diversity of mutations,

suggesting that some lineages disappear with age [13].

The more thorough characterization of the landscape

of somatic mutations in protein-coding genes in unaf-

fected tissues will provide important insights into the

mechanisms of age-associated mutagenic processes,

also associated with neutrality or selection.

Technical challenges studying
mosaicism

A major challenge for the study of PZM is distinguish-

ing biologically relevant, low-frequency postzygotic

variants from technically induced errors. In previous

years, only 1% of subjects younger than 50 years of

age showed evidence for somatic point mutations [51–
53]. Large clones resulting in frequencies of ~ 10% are

detectable by standard whole-exome or multigene

NGS in, for example, clonal hematopoiesis [52,53].

Alternatively, PZM is detected if the clones constitute

a sizeable percentage of cells in confined biopsies [54].

However, standard depth (109–309) NGS methods of

whole-exome or targeted sequencing are not accurate

enough to detect low-level mosaics (below a frequency

of < 5–10%). Increasing the sequencing depth to

10 0009–100 0009 does not solve the problem either,

since standard NGS has a background error rate of up

to 1% precluding confident measurements of minor

Zygote

Postzygotic development

a b c d e f gZygote

A B

Zygote

Fig. 2. Development and manifestation of postzygotic mutations. (A) Left side shows a ‘normal’ zygote compared to a zygote with a

dominant germline mutation (red) at the right side that is either transmitted from one of the parents or arose in one of the parental germ

cells de novo and affects the whole body of the offspring. (B) In contrast, mutations can also arise postzygotically during embryonic

development or throughout the life affecting only subsets of cells (PZM). In theory, an early mutation should lead to disseminated

mosaicism involving more tissues of the body depending on the time of onset and specific layer (a-e), whereas a later, lineage-specific error

should result in organ-confined mosaicism subsequent to clonal expansion (e.g., skin lesions shown for case g).
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allele frequencies below 1%. These appear as ‘back-

ground noise’ in most genetic assays, and standard

bioinformatic filters frequently miss them.

Over the past years, studies with the required sensi-

tivity to measure PZM in normal or unaffected

somatic tissue are picking up with the development of

ultrasensitive sequencing technologies. These involve

special library preparation protocols to distinguish a

real mosaic from artifacts (e.g., Ref. [9,13]). These

higher accuracy NGS technologies, for example,

molecular inversion probes or amplicon sequencing,

can detect mutations at lower frequencies (< 1%) and

resolve lower-frequency mosaicism or subclones [9,15].

Currently, the most accurate NGS method for detect-

ing ultralow variants is duplex sequencing (DS), which

uses barcodes to retrieve the sequence of both strands

of the DNA sequence [55,56] and reviewed in Ref.

[57]. Using ultra-accurate DS, it was shown that low-

frequency (0.1–0.01%) TP53 mutations exist in multi-

ple healthy tissues, from newborn to centenarian

[13,58]. More importantly, using this highly sensitive

method also allowed to identify low-frequency TP53

mutations that were heavily enriched in women with

ovarian cancer, but not in unaffected women, high-

lighting the importance of this sequencing method to

identify mosaic mutations correlated with disease [13].

The precise choice of which tissues or cells to select

for collection is also an important concern. These

should represent tissues from different developmental

lineages (endoderm, mesoderm, and ectoderm) and

should be easy to retrieve. Blood, fibroblasts, saliva,

and urine are easy to sample and contain the major

components of mesodermal origin, whereas buccal

swaps or skin biopsies represent the ectoderm. When

screening for PZM with a clinical outcome, the best

approach is to sample small biopsies of the affected

tissue, as well as biopsies of normal tissue surrounding

the lesion [21].

Drosophila may serve as a model of
PZM in humans

Drosophila has proven to be an excellent ‘mosaic

model’ for research into cancer mechanisms, regenera-

tive growth, stem cell behavior, and cell competition,

as it allows the study of PZM in more detail, such as

the microenvironment of overgrown tissues or modi-

fiers affecting such overgrowth. Moreover, the experi-

mental induction of mosaics in Drosophila has been

used for many years as a research tool to characterize

lethal genes, to monitor the growth of tumor cell

clones or to investigate cell competition mechanisms.

In particular, mosaicism in the RAS signaling pathway

has been studied very intensively in Drosophila mosaic

clones of imaginal disk cells carrying the activating

RASVal12 mutation that forms benign tumors or slight

overgrowth (see Ref. [59], for a recent review).

Another advantage of this system is that mosaic

clones can be induced tissue-specifically, both in the

soma and in the germline, and allows to examine the

fate of the individual PZM in different tissues or clone

sizes. This information can then be translated into the

penetrance of the PZM, the cell autonomy, and the

pleiotropic effect of the mutation in developmental time

or aging. Similarly, it is possible to prepare flies with a

certain constant proportion of mutant clones on differ-

ent genetic backgrounds and search for genetic modi-

fiers of disease severity. In addition, Drosophila can be

used to find ‘non-standard phenotypes of some mosaic

clones’. For example, several recessive mutations in the

Drosophila BMPR1A gene in heterozygous clones

induced in wild-type individuals caused wing damage.

This phenotype was not observed in individuals consist-

ing of heterozygous cells or in heterozygous individuals

carrying homozygous mutant clones. Similar hetero-

clones with a phenotype resulting from a ‘one-hit’ muta-

tion could also occur in humans [60].

Finally, Drosophila PZM models may be useful for

studying physiological phenomena difficult to perform

in human tissues or mammalian models—for example,

organ growth associated with cell competition is known

to eliminate clones containing cells with lower fitness

[61]. Such experiments may bring relevant implications

for humans; however, genetic differences between Dro-

sophila and humans may pose a challenge for the trans-

lation of such data to biomedical research [62,63].

Conclusions

It is widely acknowledged that very low-frequency

mosaic mutations have been undercharacterized. This

is added to the difficulty that the genetic profile of a

single tissue collected at one time point is not a faith-

ful portrait of other tissues from the same subject or

the same tissue throughout the lifetime of the individ-

ual. Yet, ultra-accurate NGS technologies have opened

the door to unravel the precise molecular role of low-

frequency PZM in somatic diseases and could tackle

one of the big remaining questions: Which PZMs

accumulate randomly with age and which are causal

of disease?
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