

Impact of the climate change on the catchment area of the Thaya/Dyje Auswirkungen des Klimawandels auf das Einzugsgebiet der Thaya Vlivy změny klimatu na povodí řeky Dyje Climate

Climate change and droughts in Europe

Günter Blöschl Vienna University of Technology

Czech Hydrometeorological Institute T.G. MASARYK WATER RESEARCH INSTITUTE

Droughts in the Past

Elbe river: the Děčín Hunger Stone, August 2022

Loire river, July 2003

Droughts in the Past

August 2015 Upper Austria

August 2015

1. Climate change and precipitation

Global air temperatures

Observed trends of annual precipitation

1980-2019

Projections of annual precipitation

SSP2-4.5 (2081-2100 vs 1995-2014)

Precipitation

Evapotranspiration

Runoff

Surface soil moisture

Observed precipitation deficit (drought severity)

1951-1970

1971–1990

1991–2010

Severe droughts

Few droughts

Spinoni et al. (2015)

Example of meteorological drought event

Dec 1862 - April 1863. Dark colours: least precipitation

Drought intensities and air temperatures Summer

Size of circles: drought intensity (lack of precipitation) Colour: air temperature anomaly during drought

10/22

Haslinger and Blöschl (2017) WRR

Drought intensities and air temperatures Winter

Size of circles: drought intensity (lack of precipitation) Colour: air temperature anomaly during drought

11/22

Haslinger and Blöschl (2017) WRR

Summer droughts have become more frequent, winter droughts less frequent

12/22

Haslinger and Blöschl (2017) WRR

2. Climate change and low flows

Long term water balance

Runoff generation and water balance

15/22

Mean date of occurrence of annual low flows

Water balance of Austria

Based on streamflow measurements Evaporation has increased by 80 mm/a (i.e. by 17%)

Average of 166 catchments, running mean

Duethmann and Blöschl (2018)

Estimated water abstractions

Vandecasteele et al. (2014), Wriedt and Bouraoui (2009)

Observed trends in low flow (AM7) May–Nov.

Gridded trend in runoff of driest months

Gudmundsson (2016)

+20 +15 +10 +5

0 0 -5

-10 -15 -20

Projected change in low flow (Q90)

under 2K warming compared to 1971-2000

21/22

Conclusions

- Global rainfall changes mainly due to changed atmospheric circulation patterns
- Central Europe: Summer droughts have become more frequent, winter droughts less frequent
- Mediterranean: Decreasing summer low flows
- Cold areas: Increasing winter low flows due to warmer climate
- Central Europe: Slightly decreasing summer low flows due to more frequent summer droughts and increasing evaporation
- Observed low flow trends likely to continue into the future