Wire-based Additive Manufacturing of Magnesium Alloys

Stefan Gneiger¹, D. Koutny², S. Senck³, M. Schnall¹, N. Papenberg¹, T. Klein¹

¹ Austrian Institute of Technology, Light Metals Technologies Ranshofen, Austria

² Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic

³ University of Applied Sciences Upper Austria, Austria

TMS 2022 150TH ANNUAL MEETING & EXHIBITION www.tms.org/TMS2022 • #TMSAnnualMeeting

CONTENTS

- Additive manufacturing of Mg overview
- Wire additive manufacturing (WAM)
- Projects at LKR

COMPARISON OF METAL AM TECHNOLOGIES

[1] DigitalAlloys, Digital Alloys' Guide to Metal Additive Manufacturing – Part 9: Directed Energy Deposition (DED) (2019). https://www.digitalalloys.com/blog/directed-energy-deposition/

WIRE-BASED ADDITIVE MANUFACTURING

- + Standard welding equipment
- + High deposition rates with nearly unlimited space (compared to powderbased processes)
- + Material efficient (compared to subtractive methods)
- + Short lead times

Usable materials: Titanium, steel, nickel, aluminum and magnesium alloys

- Limited part complexity
- Limited ability to produce thin walls
- Post-processing (machining) necessary

Schematic representation of the WAAM process

WIRE-BASED ADDITIVE MANUFACTURING

- Building space limited by handling device only
- Possible deposition rates
 - Titanium 3.7 kg/h [2]
 - Aluminum 2 kg/h
 - Steels 4 kg/h [2]
 - Magnesium 1 kg/h
- Layer dimension/precision ≈ 3 mm
- Automatic CAD/CAM interface in prototyping phase

Time Stamp: 02.04.2019 12:28:15.1862 | Trigger Offset: 0.0 [ms] | Frame Index: 6 | Device V color | Device Vendor: iX Cameras | F

WIRE-ARC ADDITIVE MANUFACTURING AT AIT/LKR

Power sources

- CMT Advanced, CMT-TWIN (Fronius)
- Magic WAVE 5000 (Fronius)
- PlasmaMultiInverter 350 AC/DC TL (SBI)

ABB robot system

- Robot with 45 kg max. load
- Workpiece positioner

KUKA robot system

- Robot with 300 kg max. load
- Workpiece positioner

→ Basic equipment for light metal WAAM 25.02.2022

6

FILLER WIRE MANUFACTURING VIA EXTRUSION

Extrusion pressing of Mg alloy wires

- Small scale wire manufacturing plant ٠
- Special wires and custom alloys for R&D ٠
- Diameters 0.8 6 mm ٠
- 0 30 kg batch size ۲
- Larger batch sizes with industrial collaboration •

vs. commercial (drawn) wire

Wire sections and residue

Coil at extrusion press roller table

Single wire coil

WAAM-SPECIFIC ALLOY DEVELOPMENT

Cost efficient wire production route for special wire compositions from concept to prototype

STARTING POINT: WAAM OF MG-AZ61

- Commercial available AZ61 filler wire
- Cold metal transfer (CMT) process
- Sample size 180 x 30 x 80 mm
- Wall thickness 5 mm
- Surface roughness ~ 0.3 mm
- DR: 0.39 kg/h @ 1.6 mm wire

Yield strength	Tensile	Fracture	
(L/T)	strength (L/T)	strain (L/T)	
MPa	MPa	%	
99.2 ± 1.7 /	256.4 ± 10.1 /	15.3 ± 3.5 /	
104.4 ± 1.6	264.1 ± 1.8	15.4 ± 0.7	

Mechanical properties (tensile, room temperature)

L = Longitudinal (welding direction)

T = Transversal (perpendicular to welding direction)

T. Klein, A. Arnoldt, M. Schnall, S. Gneiger: Microstructure Formation and Mechanical Properties of a Wire-Arc Additive Manufactured Magnesium Alloy, JOM, The Minerals, Metals & Materials Society, 2021

Details of the specimens fabricated for subsequent characterization. (a) Scheme inclusive tensile specimen locations; (b) photograph of the Mg AZ61A sample fabricated by WAAM

Grain structures (a,b) and grain size distribution (c)

	Mg [wt. %]	AI [wt. %]	Zn [wt. %]	Mn [wt. %]
Wire	92.3	6.7	0.63	0.33
WAM deposit	92.8	6.3	0.62	0.34

Chemical compositions of the wire and the additively manufactured part

а

ALLOY AND PROCESS DEVELOPMENT FOR WAAM AND LPBF

- Austria-Czech Republic Lurgean Regional Development Fund
- Research on magnesium alloys for additive manufacturing of structural and biodegradable components "ReMaP". (2020-2022)

<u>AIT/LKR</u>: Material selection + alloy development, wire manufacturing, WAAM processing <u>Technical University Brno</u>: Powder production (wire atomization), LPBF processing <u>University of Applied Sciences Upper Austria</u>: Characterization

Wire-arc additive manufacturing

Powder atomization and laser powder bed fusion

ALLOY FOR STRUCTURAL COMPONENTS AX13 (Mg-Al-Zn-Ca)

ALLOY DESIGN

Alloy with high yield strength

- No rare earth elements •
- Ca for oxidation resistance ۲

Nominal chemical composition of alloy AX13

Alloy	A1	Zn	Ca	Mn [wt.%]	Mg
AX13	12.0 – 15.0	0.30 – 0.60	0.30 - 0.50	0.15 - 0.50	Rem.

Substantial amounts of β -phase $(Mg_{17}AI_{12})$

Increase of mechanical properties by artificial ageing

25/02/2022

AX13 SAMPLE PREPARATION

Wire-based additive manufacturing of specimen using the gas-metal arc-welding cold metal transfer (CMT) process

- weld speed 12 mm/s
- wire feed rate 2.0 m/min (base layer) and 1.5 m/min (building layers)
- layer thickness ~ 2.5 mm
- wall thickness of 5 mm
- protective gas: Ar + 30 % He
- Tensile test samples and metallographic samples in welding- and transverse direction

AX13 MICROSTRUCTURE

As built

- Network-like structure of divorced eutectic on the grain boundaries
- Al-Mn-phases
- Ca dissolved in the eutectic
- Lamallar eutectic structures inside the grains

After heat treatment

- Lamellar eutectic structures dissolved
- Divorced eutectic on the grain boundaries still present

c) T6 temper

d) T6 temper

AX13 MECHANICAL PROPERTIES

	YS [MPa]	UTS [MPa]	ε _f [%]
AX13			
as built	157.4 ± 2.5	209.6 ± 9.7	0.9 ± 0.2
AX13			
Т6	190.9 ± 1.4	269.2 ± 10.6	1.4 ± 0.4

- In the as built state yield strength higher than that of AZ61 (+ 50%)
- Heat treatment leads to significant increase in YS and UTS (+21 % YS, +28% UTS)
- Overall low elongation at break
- Mechanical properties in welding direction and transverse direction almost identical

 \rightarrow Adjustment of heat treatment parameters necessary to increase the amount of dissolved β -phase and thus exploit the full potential of the high Al content.

ALLOY FOR BIODEGRADABLE COMPONENTS ZX10 (Mg-Zn-Ca)

ALLOY DESIGN / PROPERTIES

Alloy with high ductility

- Only elements suitable for medical applications
- Low corrosion potential
- Alloy ZX10 based on the work of Hofstetter et al. [3]

Mechanical properties of WAAM lower compared to extruded alloy [3]

 \rightarrow Fine grain size achieved via extrusion (2 µm) not achievable via WAAM

	YS [MPa]	UTS [MPa]	ɛ _f [%]
ZX10 WAAM			
transverse dir.	75.8	210.9	20.5
ZX10 WAAM			
welding dir.	76.0	214.6	21.5
ZX10 extruded [3]	240	255	27

Mechanical properties (tensile) of alloy ZX10 [3]

Equilibrium thermodynamic calculation of alloy ZX10 [3]

[3] Hofstetter, J., Becker, M., Martinelli, E. *et al.* High-Strength Low-Alloy (HSLA) Mg–Zn–Ca Alloys with Excellent Biodegradation Performance. *JOM* **66**, 566–572 (2014). https://doi.org/10.1007/s11837-014-0875-5

SUMMARY AND OUTLOOK

Summary

- WAAM is a novel and advanced manufacturing process capable of fabricating large structures with reasonable deposition rates
- WAAM-specific material development is required for further exploitation
- The complete manufacturing chain from casting to wire fabrication and WAAM is conducted at LKR

Outlook

- Future projects will focus on the optimization of alloy concepts for WAAM processes
- WAAM processes will be aided by simulation and path planning tools
- Process optimization using various sensing and data analysis concepts

ACKNOWLEDGEMENTS

This research has been funded by the European Comission within the framework INTERREG V-A Austria–Czech Republic in the project "ReMaP" (Interreg project no. ATCZ229)

EUROPEAN REGIONAL DEVELOPMENT FUND

European Regional Development Fund

EUROPEAN UNION

THANK YOU! Stefan Gneiger, 02.03.2022

