Parallelization of IIR filters in the DFT domain

Christoph Dalpiaz

University of Applied Sciences Upper Austria, Hagenberg

April 1, 2022

$$Y(z) = H(z) \cdot X(z)$$
 $H(z) = \frac{1}{1 + a \cdot z^{-1}}$

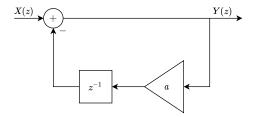


Figure 1: First order IIR filter

- Critical path : One multiplication plus one addition
- Objective : Parallel implementation in order to increase the sampling frequency by a factor of M

Clock signals

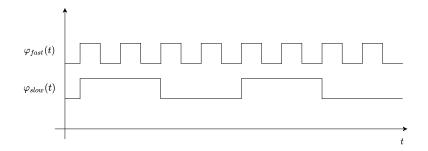


Figure 2: Clock signals of Multirate-System for a parallelization factor M = 4

Multirate-System architecture

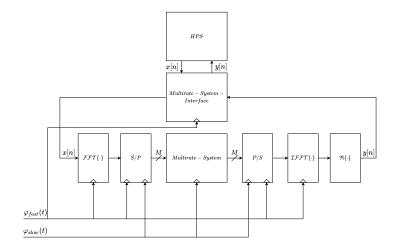


Figure 3: Architecture of Multirate-System implementation

Pole-zero plot of test filter

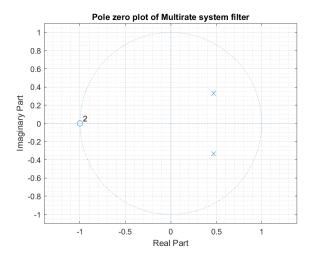


Figure 4: Pole-zero plot of 2nd order Butterworth filter

Input signal of Multirate-System

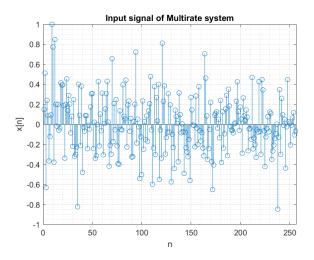


Figure 5: Normally distributed random numbers, 4 blocks of length 64

Output signal of Multirate-System

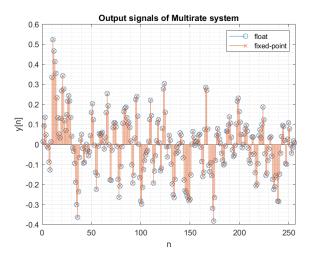


Figure 6: Output signal, float and 6.12 fixed-point

Output signal deviations

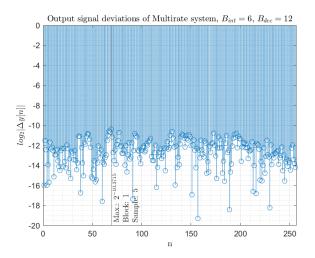


Figure 7: Deviations between float and fixed-point implementation

Synthesis result for Intel Cyclone V FPGA

Configuration:

- *M* = 2
- Integer bitwidth = 6
- Decimal bitwidth = 12

Performance :

- $\varphi_{slow,max} \approx 32 \text{ MHz}$
- $\varphi_{\textit{fast,max}} \approx 84 \ \textit{MHz}$

Complexity:

Resource	Complete design	FFT and IFFT
ALMs	$rac{5914}{32070}pprox 18.4\%$	$\frac{4263}{32070} \approx 13.3\%$
M10K blocks	$\frac{53}{397} \approx 13.4\%$	$rac{48}{397}pprox 12.1\%$
DSP blocks	$rac{58}{87}pprox 66.7\%$	$rac{12}{87}pprox 13.8\%$