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Problem Formulation

Let be given: Time Series IO Data
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Goal: Approximate a Continuous Non-Linear Dynamical System
that reproduces the measured 1O behaviour

Hammerstein-Wiener Models have already been implemented for
this purpose

ye = H(G(z) * fi(ue)) (discrete case)
y(t) = (H(s) = A (u(t))) (continuous case)

.. where fi(+) and f»(-) are memory-less nonlinear functions and
G(z) resp. H(s) represent the transfer function of a linear
dynamical system



Problem Formulation

Question: can true physical behaviour be generated from the 10
data instead of behavioral models?

Answer: yes, but not directly = the formulated problem is
under-determined, but we may use the behavioral model as a
stepping stone

We assume that physical models may be formulated as a non-linear
ordinary differential equation (ODE) system of 1st order

y(t) = f(y(t), u(t), t; ©)

Possible approximation methods are Al approaches like Ordinary
Differential Equation Networks (ODENets) or Sparse Identification
of Non-Linear Dynamics (SINDy)...



Brief: Ordinary Differential Equation Networks

Goal: find an ODE system 2x(t) = f(x(t), t, ©) that fits a given
series of |0 data

Method: Optimize the system parameters © using gradient-based
methods. The required gradients are obtained through an arbitrary
numerical solver and utilizing the adjoint method.

Advantages: The right-hand side may be chosen arbitrarily, but
dense neural networks are common. Pure Black-Box method,
which does not require a-priori knowledge of the approximated
system. Results in compact systems in comparison to classical
neural networks

Disadvantages: Not all numerical solvers provide gradients,
Measures have to be taken to ensure the ODE stability



Brief: Sparse ldentification of Nonlinear Dynamics

Goal: find an ODE system 2x(t) = © =(x(t)) that fits a given
series of 10 data, whereby =(x(t)) is a library of elementary basis

functions (polynomials, ...)

Method: Linear Regression Problem with Focus on © Sparsity
using Lasso Regularization (L1-Norm) or Sequential Linear Least
Squares Optimization. It is assumed that x(t) can be measured
and x(t) is determinable (through measurement or numerical
differentiation)

Advantages: Fast Optimization Algorithms, Results in a Set of
readable ODEs which may be interpreted easily, source terms can
be easily included within ©(x(t))

Disadvantages: Requires prior knowledge or experience when
selecting the basis functions, exponential computational effort for
large systems or function libraries



Derivatives and Finite Differences

Starting from the Hammerstein-Wiener Difference Equation of the
nth-order Linear Dynamic Section G(z) = B(z)/A(z)...

Yt = bius_1+ ...+ bplis—p —arys—1— ... — anyt—n

Goal: Difference Equation <— Differential Equation (Runge
Kutta)

E:Exy, =41, A : A=E —1,AXt = X¢, 41 — Xt
) d
D . Dth = th = ax(t)h:tn
E and D are connected via a Taylor Series...
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Derivatives and Finite Differences

Conclusion: If a difference equation contains the operator AX, the
corresponding ODE is also of order k

Problem: Higher Order ODEs can not be approximated by a
single 1st order ODE of the form y(t) = f(y(t), u(t),t,©)

Solution: Any k-th order ODE may be formulated as system of k
1st order ODEs, but we lack the 10 data to model the internal
variables of the system...

Alternatively we may utilize the behavioral models State-Space
form with sampling rate T

Xt41 = Axt + Buy  bilinear x(t) = Acx(t) + Beu(t)
>
vt = Cxe + Dur  gm2z=1” y(t) = Cex(t) + Deu(t)

Ts z+1

which can be modeled without issues using classical approaches



Visualizing the Approximation Problems

Example: y(t) +2y(t) + 17y(t) = -2, y(0) =2, y(0) =0
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Reformulating to 1st Order ODE System

Example: y1(t) = y2(t), y2(t) = —2y2(t) — 17y1(t) — 2

y1(t), ya(t)
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Re-Defining the ODE Model Structure

Inspired by the discrete Hammerstein-Wiener Formulation, the
following continuous model is proposed...

K

Z k)_f(X (t),u(t),t,0©)
=0

( ) = x(t)

.. which includes weighted higher-order derivatives on the
left-hand side
Consequences
@ ODENet approach may be neglected for behavioral models
@ Parts of the SINDy-Methods are still relevant
@ Non-Linearities can be encorporated explicitly within f(-)

= further investigation required



