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Problem Formulation

Let be given: Time Series IO Data
yt ∈ (y1, ..., yN) , ut ∈ (u1, ..., uN)

Goal: Approximate a Continuous Non-Linear Dynamical System
that reproduces the measured IO behaviour

Hammerstein-Wiener Models have already been implemented for
this purpose

yt = f2(G (z) ∗ f1(ut)) (discrete case)

y(t) = f2(H(s) ∗ f1(u(t))) (continuous case)

... where f1(·) and f2(·) are memory-less nonlinear functions and
G (z) resp. H(s) represent the transfer function of a linear
dynamical system



Problem Formulation

Question: can true physical behaviour be generated from the IO
data instead of behavioral models?

Answer: yes, but not directly ⇒ the formulated problem is
under-determined, but we may use the behavioral model as a
stepping stone

We assume that physical models may be formulated as a non-linear
ordinary differential equation (ODE) system of 1st order

ẏ(t) = f (y(t), u(t), t; Θ)

Possible approximation methods are AI approaches like Ordinary
Differential Equation Networks (ODENets) or Sparse Identification
of Non-Linear Dynamics (SINDy)...



Brief: Ordinary Differential Equation Networks

Goal: find an ODE system d
dt x(t) = f (x(t), t,Θ) that fits a given

series of IO data

Method: Optimize the system parameters Θ using gradient-based
methods. The required gradients are obtained through an arbitrary
numerical solver and utilizing the adjoint method.

Advantages: The right-hand side may be chosen arbitrarily, but
dense neural networks are common. Pure Black-Box method,
which does not require a-priori knowledge of the approximated
system. Results in compact systems in comparison to classical
neural networks

Disadvantages: Not all numerical solvers provide gradients,
Measures have to be taken to ensure the ODE stability



Brief: Sparse Identification of Nonlinear Dynamics

Goal: find an ODE system d
dt x(t) = Θ Ξ(x(t)) that fits a given

series of IO data, whereby Ξ(x(t)) is a library of elementary basis
functions (polynomials, ...)

Method: Linear Regression Problem with Focus on Θ Sparsity
using Lasso Regularization (L1-Norm) or Sequential Linear Least
Squares Optimization. It is assumed that x(t) can be measured
and ẋ(t) is determinable (through measurement or numerical
differentiation)

Advantages: Fast Optimization Algorithms, Results in a Set of
readable ODEs which may be interpreted easily, source terms can
be easily included within Θ(x(t))

Disadvantages: Requires prior knowledge or experience when
selecting the basis functions, exponential computational effort for
large systems or function libraries



Derivatives and Finite Differences

Starting from the Hammerstein-Wiener Difference Equation of the
nth-order Linear Dynamic Section G (z) = B(z)/A(z)...

yt = b1ut−1 + ...+ bnut−n − a1yt−1 − ...− anyt−n

Goal: Difference Equation ←→ Differential Equation (Runge
Kutta)

E : Extn = xtn+1,∆ : ∆ = E − 1,∆xt = xtn+1 − xtn

D : Dxtn = ˙xtn =
d

dt
x(t)|t=tn

E and D are connected via a Taylor Series...
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Derivatives and Finite Differences

Conclusion: If a difference equation contains the operator ∆k , the
corresponding ODE is also of order k

Problem: Higher Order ODEs can not be approximated by a
single 1st order ODE of the form ẏ(t) = f (y(t), u(t), t,Θ)

Solution: Any k-th order ODE may be formulated as system of k
1st order ODEs, but we lack the IO data to model the internal
variables of the system...

Alternatively we may utilize the behavioral models State-Space
form with sampling rate Ts

xt+1 = Axt + But
yt = Cxt + Dut

bilinear
========⇒
s(z)≈ 2

Ts
z−1
z+1

ẋ(t) = Acx(t) + Bcu(t)
y(t) = Ccx(t) + Dcu(t)

...

which can be modeled without issues using classical approaches



Visualizing the Approximation Problems

Example: ÿ(t) + 2ẏ(t) + 17y(t) = −2, y(0) = 2, ẏ(0) = 0
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Reformulating to 1st Order ODE System

Example: ẏ1(t) = y2(t), ẏ2(t) = −2y2(t)− 17y1(t)− 2
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Re-Defining the ODE Model Structure

Inspired by the discrete Hammerstein-Wiener Formulation, the
following continuous model is proposed...

K∑
k=0

βkx
(k) = f (x(t), u(t), t,Θ)

y(t) = x(t)

... which includes weighted higher-order derivatives on the
left-hand side

Consequences

ODENet approach may be neglected for behavioral models

Parts of the SINDy-Methods are still relevant

Non-Linearities can be encorporated explicitly within f (·)
⇒ further investigation required


