

Project Update TU Wien

Interreg AMOR ATCZ-203

EUROPEAN UNION

Assoc. Prof. DI Dr. Holger Arthaber holger.arthaber@tuwien.ac.at DI Christian Spindelberger christian.spindelberger@tuwien.ac.at

- Motivation
- State-of-the-Art
- General requirements
 - CISPR 16-1-1
 - TEM cell
- SDR platforms
 - HackRF One
 - LimeSDR
 - USRP X310 (UBX daughterboard)
 - Limits
- RF extension board
 - Structure
 - Measurement results
- Further steps

Motivation

3

- Survey of industry partners
 - Mostly small companies
 - Almost all struggle with EMC
 - Central problem: radiated emission and immunity testing
 - Others: filter design, PCB layout
 - Low/No-budget available for measurement instruments
- General research question
 - How to estimate radiated emission and immunity test performance

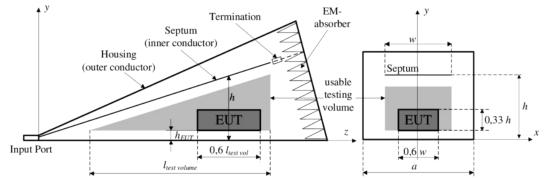
Circumstances

- Low capabilities in terms of: premises
- Financial liquidity
- (Know-How)

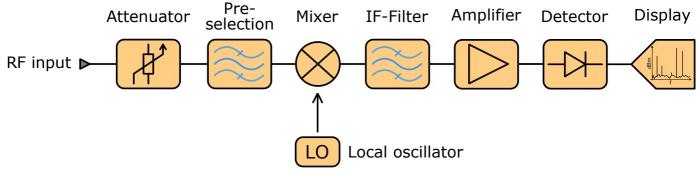
Motivation

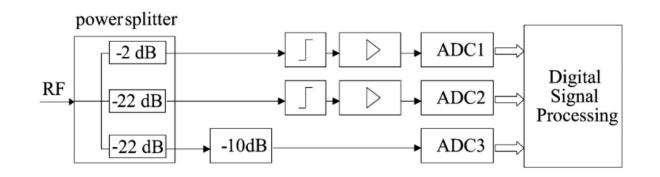
• State-of-the-Art

- General requirements
 - CISPR 16-1-1
 - TEM cell
- SDR platforms
 - HackRF One
 - LimeSDR
 - USRP X310 (UBX daughterboard)
 - Limits
- **RF** extension board
 - Structure
 - Measurement results
- Further steps


State-of-the-Art

- Optimum test site:
 - Semi Anaechoic Chamber
 - Very large
 - Very expensive
 - Long measurement times
 - Near-field sites:
 - YIC EMScanner
 - Pendulum Detectus
 - Visualize EMI spots
 - Fast and repeatable
 - No statement about absolute values
 - Not compliant!
 - Currently, no immunity testing
 - >20000€
- TEM wave guides:
 - Fully compliant site
 - No cables allowed
 - TEM size scales with EUT size
 - Cheap manufacturing process
 - Frequency limitations
 - <1000€



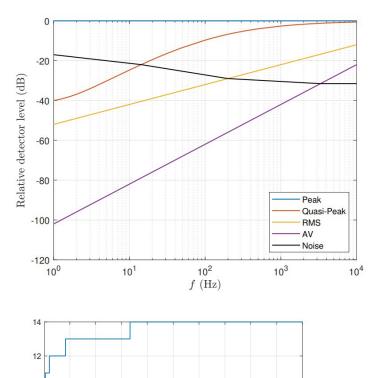


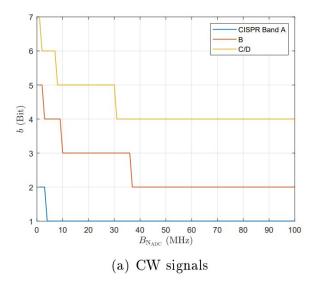
- Heterodyne EMI Receivers
 - Massive pre-selection filter bank
 - Limited analysis bandwidth
 - Real-time operation available

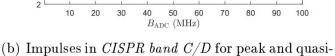
- Floating
 - Inv
 - Very large real-time analysis bandwidth > 1GHz
 - Outperforms heterodyne principle in terms of measurement speed
 - Problems with DR and echoes!

7

- Motivation
- State-of-the-Art


• General requirements


- CISPR 16-1-1
- TEM cell
- SDR platforms
 - HackRF One
 - LimeSDR
 - USRP X310 (UBX daughterboard)
 - Limits
- RF extension board
 - Structure
 - Measurement results
- Further steps



• CISPR 16-1-1

- Identifies the receiver as black box
- Performance is verified by applying signals
- Broadband impulses (BW > 1GHz) and CW
- Constraints are hard to meet for fully compliant receivers (Quasi-Peak detector)
- For instance: an impulse with ~75V and a CW with 1mV has to be measured in the same config
- Analyzing the utilized scenarios leads to typical parameters: ENOB, DR, etc.

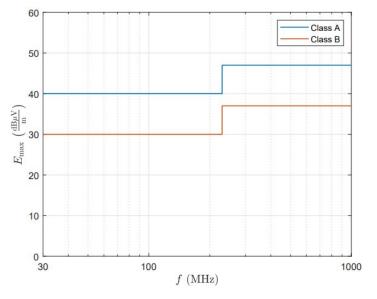
CISPR Band C/D Quasi-Peak

Peak

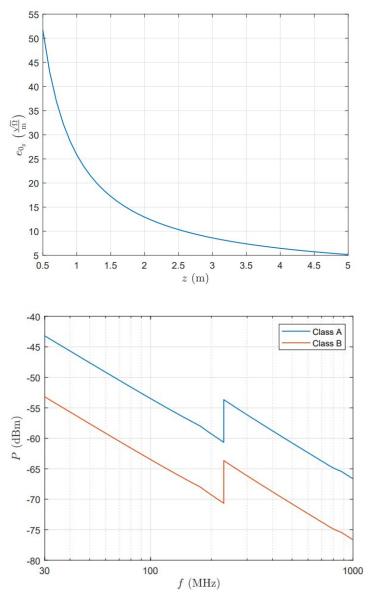
(b) Impulses in CISPR band C/D for peak and qua peak detection

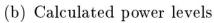
10

6


b (Bit)

General Requirements




• TEM cell

- Field factor increases with decreasing cell volume
- The receiver sensitivity gets higher
- Suffering less from frequency birdies
- Noise figure can be relaxed
- No LNA needed

(a) Maximum field strength DIN EN 55032

- Motivation
- State-of-the-Art
- General requirements
 - CISPR 16-1-1
 - TEM cell

• SDR platforms

- HackRF One
- LimeSDR
- USRP X310 (UBX daughterboard)
- Limits
- **RF** extension board
 - Structure
 - Measurement results
- Further steps

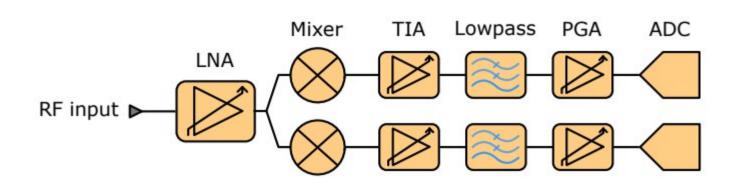
SDR Platforms

HackRF One

- 8 Bit
- DCR with second IF stage
- High DR mixer P1db ~ 10dBm

LimeSDR

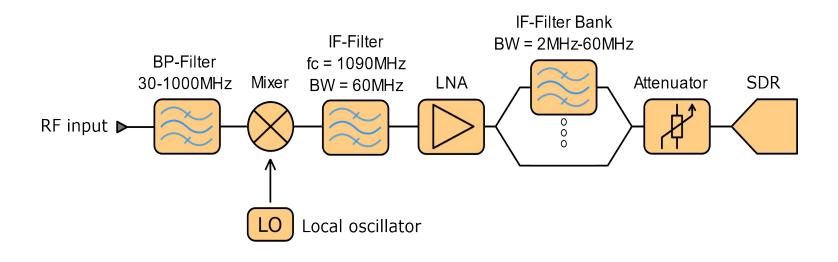
- 12 Bit
- DCR
- 3 pole lowpass


USRP X310 (UBX)

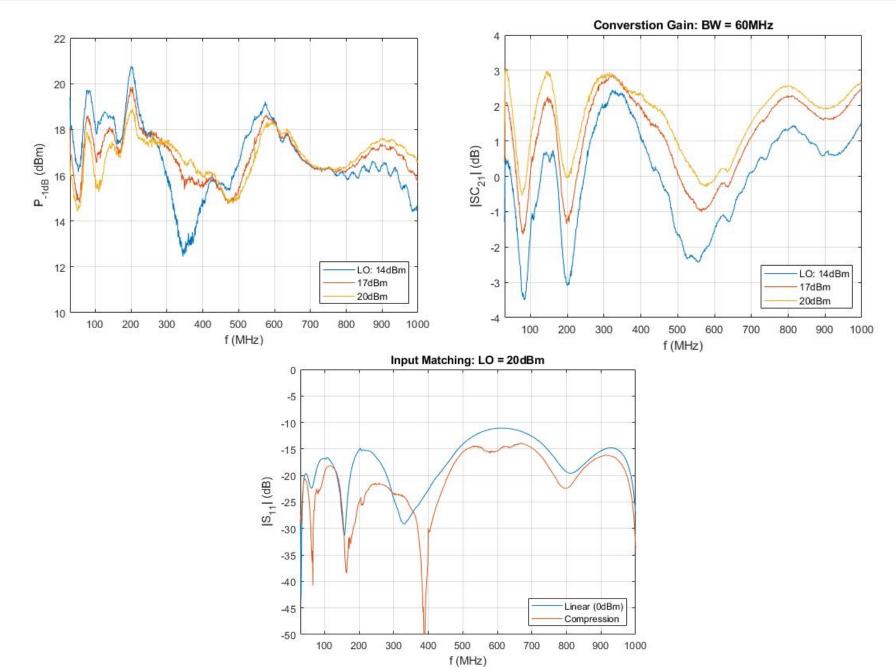
- 14 Bit
- DCR with second IF stage
- > 10 pole Lowpass
- LNA cannot be bypassed
- Gain setting easy, only one programmable attenuator

- Motivation
- State-of-the-Art
- General requirements
 - CISPR 16-1-1
 - TEM cell
- SDR platforms
 - HackRF One
 - LimeSDR
 - USRP X310 (UBX daughterboard)
 - Limits

• RF extension board

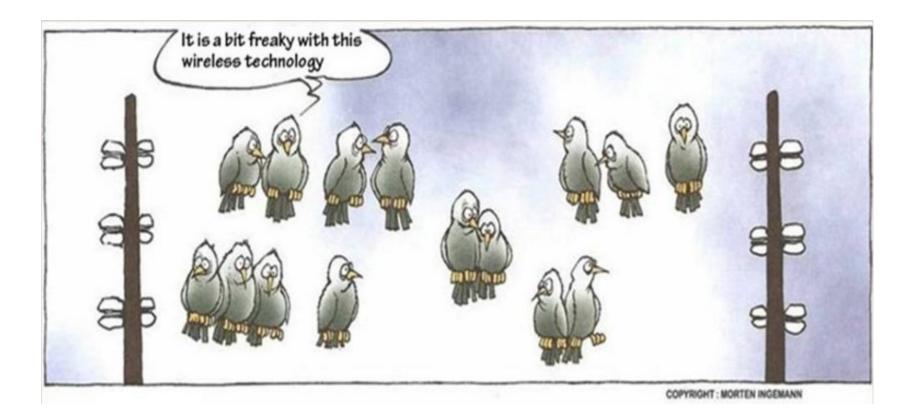

- Structure
- Measurement results
- Further steps

RF Extension Board



- Consisting of:
 - Pre-selection filter
 - High DR mixer
 - High DR LNA
 - SAW IF filter bank (2MHz to 60MHz)
 - Attenuator
- Replacing pre-selection filter bank
- Gain adaptation can be relaxed

- Motivation
- State-of-the-Art
- General requirements
 - CISPR 16-1-1
 - TEM cell
- SDR platforms
 - HackRF One
 - LimeSDR
 - USRP X310 (UBX daughterboard)
 - Limits
- **RF** extension board
 - Structure
 - Measurement results
- Further steps



- Noise figure and IMD measurements of the RF extension board
- Measuring optimum gain settings of SDRs
- Characterizing SDR performance in terms of CISPR 16-1-1
 - QP dynamic range
 - Harmonic distortion
 - Spectral regrowth etc.
 - Comparing with RF extension

Thank you for your attention!

