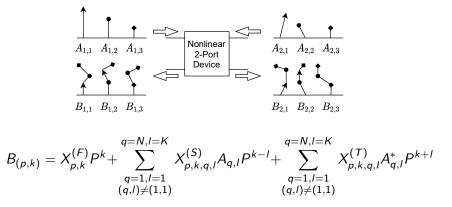
Validating the AWR X-Parameter Generator using LinzFrame

Martin K. Steiger

University of Applied Sciences Upper Austria, Hagenberg


July 29, 2021

Generating X-Parameters in the Frequency Domain

Idea: Apply a Large-Signal Tone at Port 1 and sweep an additional Small-Signal Tone with a slight frequency offset Δf for every Port and Harmonic \Rightarrow this leads to Lower and Upper Sidebands around the multiples of the fundamental frequency $k \cdot f_0 \pm \Delta f$

Generating X-Parameters in the Frequency Domain

$$B_{(p,k)} = X_{p,k}^{(F)} P^{k} + \sum_{\substack{q=1,l=1\\(q,l)\neq(1,1)}}^{q=N,l=K} X_{p,k,q,l}^{(S)} A_{q,l} P^{k-l} + \sum_{\substack{q=1,l=1\\(q,l)\neq(1,1)}}^{q=N,l=K} X_{p,k,q,l}^{(T)} A_{q,l}^{*} P^{k+l}$$

Algorithm 1: Frequency Domain X-Parameter Extraction $(X^{(F)})$

- 1: Large-Signal Tone with f_0 to Port 1
- 2: Calculate the unknown Currents and Voltages
- 3: Calculate the Scattered Wave *B* and Incident Wave *A* using the determined Unknowns
- 4: for $p = 1, 2, \ldots$, Ports do
- 5: **for** k = 1, 2, ..., Harmonics **do**
- 6: $B_p =$ Signal Magnitude of the Scattered Wave B k-th Harmonic at Port p

7:
$$A =$$
Signal Magnitude of the Incident Wave at f_0 at Port 1

- 8: $X_{p,k}^{(F)} = B_p/A$
- 9: end for
- 10: end for

Generating X-Parameters in the Frequency Domain

. .

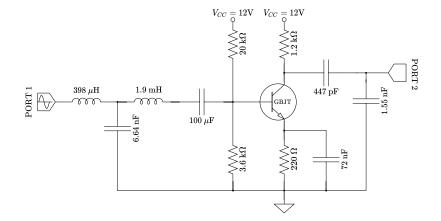
Algorithm 2 : Frequency Domain X-Parameter Extraction $(X^{(5)} \text{ and } X^{(T)})$	
1: f	or $p = 1, 2,,$ Ports do
2:	for $k = 1, 2,,$ Harmonics do
3:	Large-Signal Tone with f_0 at Port 1, Small-Signal Tone with $kf_0+\Delta f$ at
	Port <i>p</i>
4:	Determine the unknown Currents and Voltages by solving the Circuit
	Equations
5:	Calculate the Incident Wave A and Scattered Wave B using the determined
	Unknowns
6:	for $q = 1, 2, \ldots$, Ports do
7:	for $l = 1, 2, \ldots$, Harmonics do
8:	$B_u =$ upper side-band of B at Port q at $\mathit{lf}_0 + \Delta f$
9:	$B_I =$ lower side-band of B at Port q at $\mathit{lf}_0 - \Delta f$
10:	$A_u =$ upper side-band of A at Port q at $kf_0 + \Delta f$
11:	$X_{ ho,k,g,l}^{(S)} = B_u / A_u$ $X_{ ho,k,g,l}^{(T)} = B_l / A_u$
12:	$X_{p,k,q,l}^{(T)} = B_l / A_u$
13:	end for
14:	end for
15:	end for
16: end for	

() (()

 $- \cdot \cdot \cdot (T)$

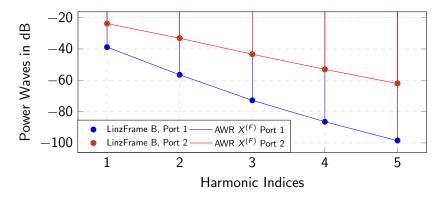
Approaches in LinzFrame and AWR

LinzFrame

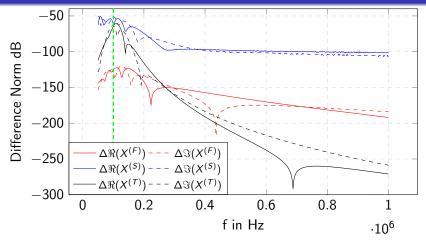

- Frequency Domain Approach
 - Perturbation Methods
 - PDE Approach
- Time Domain Approach (very similar to Perturbation Approach)

Cadence AWR

No specific algorithm is given in the accessible documents. A frequency domain method with harmonic balance is assumed.


AWR Model Validation using Harmonic Balance (HB)

Prerequisite: HB Implementations provide equivalent Results \checkmark



AWR Model Validation using Harmonic Balance (HB)

Idea: Apply a Large-Tone Signal at Port 1 with -30 dBm at 100 kHz and evaluate the Simulation Results in LinzFrame and AWR \Rightarrow when no other Harmonics are present, the Scattered Wave *B* (determined with HB) should match the $X^{(F)}$ Parameters of the AWR Model

X-Parameter Difference Norm

Since the common emitter amplifier is matched at 100 kHz and has the largest gain there, we also expect the largest X-parameters at this point and thus probably also high deviations from the AWR model