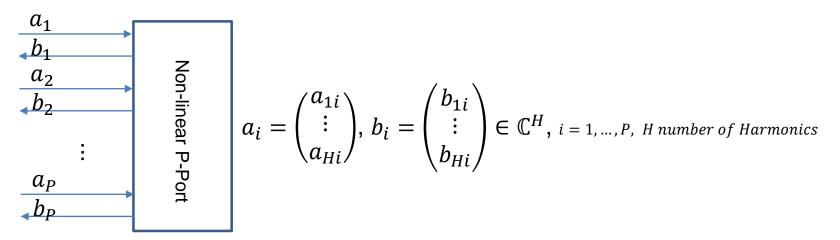


Non Linear Scattering Matrices

Sven Eder, Research Assistant, 14.06.2019 FH OÖ Research & Development GmbH

Definition of Non-Linear Scattering Matrices

Scattering Variables a, b (see [1])



Matrices A, B of in and outgoing scattering states

$$A = (a_1 \cdots a_P), B = (b_1 \cdots b_P) \in \mathbb{C}^{H \times P}, a = vec(A), b = vec(B) \in \mathbb{C}^{HP}$$

In case of infinite harmonics the vec operation makes no sense and one has to redefine the matrices A and B as the transpose. The above definition corresponds to the formulation in [1].

Definition of Non-Linear Scattering Matrices

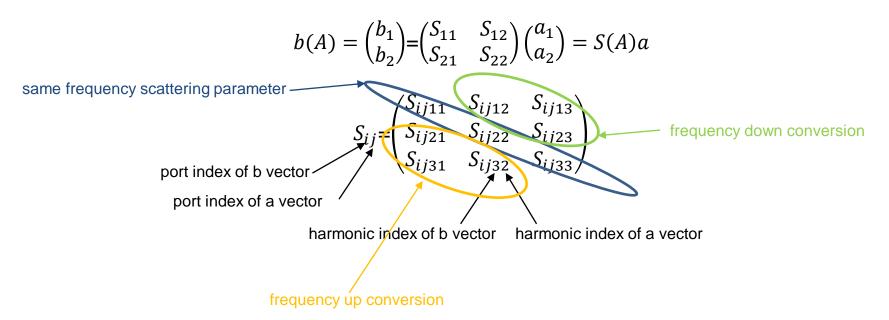
Non linear scattering matrix (see [1],[2])

$$b(A) = S(A)a, S(A) \in \mathbb{C}^{HP \times HP}$$

- Existence of S(A) follows from global scattering solutions satisfying asymptotic boundary conditions (eg. for nonlinear interactions in quantum scattering theory see [2]).
- If *S* does not depend on A this equation determines *S* uniquely.
- For nonlinear interactions *S* depends on A and uniqueness cannot be ensured.
- Minimal assumption : S(A) is defined and continuous in A on some domain $\Omega \ni 0$.

Example

Two port network with 3 harmonics



Inverse Scattering Problem for 2 Ports and One Frequency

Problem: Is it possible to determine S(A) from the scattering variables b(A)? Let's have a look at the two port case with one frequency index.

Here
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
 and
$$\mathbf{b}(\mathbf{A}) = \mathbf{b}(a_1, a_2) = \begin{pmatrix} b_1(a_1, a_2) \\ b_2(a_1, a_2) \end{pmatrix} = \begin{pmatrix} S_{11}(a_1, a_2) & S_{12}(a_1, a_2) \\ S_{21}(a_1, a_2) & S_{22}(a_1, a_2) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

unknown elements of the scattering matrix

and S is assumed to be continuous on $\Omega_1 \times \Omega_2 \ni 0$.

For
$$(a_1, a_2) \in \Omega_1 \setminus \{0\} \times \Omega_1 \setminus \{0\}$$
 set

$$S_0(a_1, a_2) = \begin{pmatrix} b(a_1, 0) & b(0, a_2) \\ a_1 & a_2 \end{pmatrix}.$$

Then S_0 extends continuously to $\Omega_1 \times \Omega_2$ with

$$\lim_{a_{1\to 0}} \frac{b(a_{1},0)}{a_{1}} = \frac{\partial b}{\partial a_{1}}(0,0) = \begin{pmatrix} S_{11}(0,0) \\ S_{21}(0,0) \end{pmatrix} \text{ and } \lim_{a_{2\to 0}} \frac{b(0,a_{2})}{a_{2}} = \frac{\partial b}{\partial a_{2}}(0,0) = \begin{pmatrix} S_{21}(0,0) \\ S_{22}(0,0) \end{pmatrix}$$

Inverse Scattering Problem for 2 Ports and One Frequency, S_0 Matrix

By definition

$$S_0(0,0) = S(0,0) \text{ and for } (a_1, a_2) \in \Omega_1 \times \Omega_2 \subset \mathbb{C}^2$$

$$S_0(a_1, 0) \binom{a_1}{0} = S(a_1, 0) \binom{a_1}{0} \text{ resp. } S_0(0, a_2) \binom{0}{a_2} = S_0(0, a_2) \binom{0}{a_2}. \text{(*)}$$

Such an S_0 is not uniquely defined. For continuous functions Φ_{11} , Φ_{12} , Φ_{21} , Φ_{22} on with $\Omega_1 \times \Omega_2$ $\Phi_{11}(a_1, 0) = \Phi_{21}(a_1, 0) = 0$ resp. $\Phi_{12}(0, a_2) = \Phi_{22}(0, a_2) = 0$ define

$$\delta S_0 (a_1, a_2) = \begin{pmatrix} \Phi_{11}(a_1, a_2) & \Phi_{12}(a_1, a_2) \\ \Phi_{21}(a_1, a_2) & \Phi_{22}(a_1, a_2) \end{pmatrix}$$

Then $S_0 + \delta S_0$ also satisfies (*). Such δS_0 is obtained by δS_0 (a_1, a_2) = $S(a_1, a_2)$ - $S_0(a_1, a_2)$ which trivially satisfies $S_0(a_1, a_2) + \delta S_0(a_1, a_2) = S(a_1, a_2)$ but since S is not known this is of no help.

Inverse Scattering Problem for 2 Ports and One Frequency, S_0 Matrix

Summary

- S_0 depends only on scattering data.
- S_0 is continuous on $\Omega_1 \times \Omega_2$.
- S₀ coincides with the scattering matrix in the linear case and is uniquely defined.
- S_0 is non unique in the non-linear case.

Inverse Scattering Problem for 2 Ports and One Frequency, ΔS Matrix

Problem: S_0 does not satisfy

$$S_0(a_1, a_2)a = S(a_1, a_2)a.$$

Goal: Find such a matrix with this property which depends only on scattering data

Idea: Since S_0 coincides with S in the linear case we split off S_0 from S and define

$$\Delta S(a_1, a_2) = S(a_1, a_2) - S_0(a_1, a_2)$$

Then

$$\Delta S(a_1, a_2)a = \Delta b(a_1, a_2)$$
 with $\Delta b(a_1, a_2) = b(a_1, a_2) - b(a_1, 0) - b(0, a_2)$.

Try to solve for the matrix components of $\Delta S(a_1, a_2)$!

Inverse Scattering Problem for 2 Ports and One Frequency, ΔS Matrix

Solution: For *all* $(a_1, a_2) \in \Omega_1 \setminus \{0\} \times \Omega_1 \setminus \{0\}$

$$\Delta S(a_1, a_2) = D(a_1, a_2) + R(a_1, a_2)$$

where $D(a_1, a_2) = diag(a)^{-1} diag(\Delta b(a_1, a_2))$ is diagonal and

$$R(a_1, a_2) = \begin{pmatrix} \Phi_1(a_1, a_2) \\ -\Phi_2(a_1, a_2) \end{pmatrix} (-a_2 \quad a_1) \quad (**)$$

is a rank one matrix with

$$\Phi_1(a_1, a_2) = \frac{\Delta S_{12}(a_1, a_2)}{a_1}$$
 and $\Phi_2(a_1, a_2) = \frac{\Delta S_{21}(a_1, a_2)}{a_2}$.

Observe that $a \in Ker(R(a_1, a_2))$ implying $\Delta S(a_1, a_2)a = D(a_1, a_2)a$. As before $\Delta S(a_1, a_2)$ is not uniquely defined in the non-linear case since a rank one matrix of the form (**) with arbitrary functions $\Phi_1(a_1, a_2)$, $\Phi_2(a_1, a_2)$ can be added.

Inverse Scattering Problem for 2 Ports and One Frequency, Final Solution

If $a_1 = 0$ or $a_2 = 0$ set

$$S(a_1, a_2) = S_0(a_1, a_2),$$

otherwise set

$$SD(a_1, a_2) = S_0(a_1, a_2) + D(a_1, a_2).$$

Then

$$SD(a_1, a_2)a = S(a_1, a_2)a$$
 holds for all $(a_1, a_2) \in \Omega_1 \times \Omega_2$.

Inverse Scattering Problem for 2 Ports and One Frequency, Final Solution

Summary

- $SD(a_1, a_2)$ depends only on scattering data.
- $SD(a_1, a_2)$ coincides with the scattering matrix in the linear case since then $\Delta b(a_1, a_2) = 0$ and is uniquely defined.
- $SD(a_1, a_2)$ is non unique in the non-linear case.

To do: Is $SD(a_1, a_2)$ continuous at zero or more general how can it be made continuous at zero?

To Do List

Show continuity or find a continuous representative

Try to extend the above reasoning to more ports and more frequencies

Connection to X Parameters?

Connection to Volterra Series?

Connection to Floquet theory?

Connection to IMD and Interception Points?

Literature

- [1] Jeffrey A. Jargon, Donald C. DeGroot, K. C. Gupta, Frequency-Domain Models for Nonlinear Microwave Devices Based on Large-Signal Measurements, Journal of Research of the National Institute of Standards and Technology, Volume 109, Number 4, July-August 2004
- [2] Ali Mostafazadeh, Nonlinear Scattering and Its Transfer Matrix Formulation in One Dimension, Eur. Phys. J. Plus (2019) 134: 16. https://doi.org/10.1140/epjp/i2019-12456-x