

Benchmarking of biomolecular interaction methods

Josef Houser, Michaela Wimmerová (CEITEC-MU) Peggy Stolt-Bergner, Arthur Sedivy (VBCF) 24. 09. 2018

Pilot project introduction

Project partners:

- CEITEC MU Biomolecular Interaction and Crystallization Core Facility
- VBCF Protein Technologies Core Facility

Problem: Results obtained by biophysical techniques used for biomacromolecular (protein) characterization frequently do not meet expectations, low reproducibility → increased demand in *time, money and manpower*

Main causes:

- 1) Sample quality is not corresponding to the minimal requirements of experiment
- 2) Experiments using different machines in different laboratories are not conducted the same way

Partial goals:

- Define the minimal description of biomacromolecular samples
- Create standardized service for characterization of user samples
- Develop standard operation procedures (SOPs) for main biophysical techniques used in partnering facilities
- Set-up mechanisms for continuous quality improvement of services via know-how exchange

Project goal: To give users of both involved facilities an easy tool to characterize their samples and ensure access to standardized methods

Pilot project introduction

Broad range of equipment available in both partner labs is used for the project:

- **CF BIC**: Monolith NT.115 (MST), DelsaCore (DLS), VP-DSC (DSC), Jasco J-815 (CD), XL-I (AUC), Prometheus (DSF), AutoITC200 (ITC), VP-ITC (ITC), Biacore T200 (SPR), Rigaku Minstrel
- **ProTech CF**: Monolith NT.115 (MST), Monolith NT.LabelFree (MST), DynaPro PlateReader (DLS), VP-DSC (DSC), Chirascan Plus (CD), Akta micro (SEC-MALLS)

Project implementation

Main steps in collaboration:

Staff exchange

- Know-how sharing
- Development
- Optimization

Experimental system testing and optimization

- PAIIL fucose
- Chymotrypsin soybean trypsin inhibitor
- Mannose-binding lectin maltose
- Lysozyme NAG3

Protocols and procedures development

- Based on current state of problematics
- Implementing new approaches
- Combining precision with simplicity

Testing of created procedures

- Internal Core Facilities' staff
- External users

Date	ProTech → Brno	BIC → Vienna
7.6.2017	1	
34.8.2017	18	
27.4.2018	2	
2324.5.2018	2	
67.6.2018		6
2021.6.2018		14
46.9.2018	3	

Number of person*days/visit

Project results

Standard operating procedures (SOP)

User benefits:

- Step-by-step description of experimental set-up
- Reduces user-based mistakes
- Ensures higher data reproducibility
- Improves lab-to-lab agreement in results

Developed for several techniques

• AUC, CD, DLS, ITC, MST

Currently under testing and optimization

	CALLETTEC.	L
STANDARD OPERATING PROCEDURE (SOP)	STANDARD OPERATING PROCEDURE (SOP)	L
nalytical ultracentrifugation - Sedimentation equilibrium	Analytical ultracentrifugation – Sedimentation velocity	
salar nois that this SOP describes sedimentation equilibrium experiment with the ABS detection only	Sample preparation	
<text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text>	<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	

STANDARD OPERATING PROCEDURE (SOP) isothermal titration calorimetry – AutoITC200

G ON THE INSTRUME

Benchmarking of biomolecular interaction methods

Project results

Sample quality protocol

User benefits:

- Standardized way of sample characterization
- Defined criteria of sample quality
- Clear one-page summary
- Quick response from facility

Currently under optimization

	Comula O	lit-		manel	nunter-		
	Sample Qu	ality	100	ntro	protocol		
ante:			0.				
			op	erator.			
sample name:							
Result overview	e						
Property	Detail	G	Δ	8	Value	Technique	
Identity	Exact MW	1	-		MW [Da]	0 MS	
Purity	Protein contaminants	1				SDS-PAGE	
	Non-protein contaminants	\checkmark			A260/A280	UV-Vis	
Homogeneity	Aggregates				[96]	DLS UV-Vis AUC	
	Polydispersity	\checkmark		\square	[%]		
	Oligomeric state				[#-mer]	0 SLS 0 SEC-MALS 0 AUC	
Folding	2D structure			x			
	Stability			×	Tm ["C] Ton ["C]	DSF CD	
Batch to batch	Comparison to previous values						
lease and the se							
For endy:			-				
Oligomeric sta	te		-				
Main folded st	ate	_	-				
Concentration	(way of determ	.)					
Buffer compos	ition						
Protein seque	nce						
ic@ceitec.cz					BIC Con	Facility, CEITEC MU	
www.ceitec.cz/BIC				5.0	DEDICE 5, 625 00 1	Irno, Czech Republic	

Benchmarking of biomolecular interaction methods

Project results

Workshops organized with support of RIAT-CZ project:

- Modern techniques in Molecular Biology, 18.-20.7.2017, Vienna
 - 76 person*days
- Differential scanning calorimetry workshop, 3.-4.10.2017, Brno
 - 61 persons
- Biomolecular crystallization workshop, 23.-26.10.2017, Brno
 - 46 persons (lectures), 26 persons (practicals)
- How to characterize your sample and check its quality, 23.-25.5.2018, Brno
 - 36 persons (lectures), 17 persons (practicals)

All members of VBCF ProTech CF and CEITEC BIC CF

Does your facility require specific sample characterization? Contact us!

Benchmarking of biomolecular interaction methods